

    
      
          
            
  
Anima documentation

Welcome to the documentation of Anima and Anima scripts. Thanks for your interest. Here are a few directies to installing and what Anima and Anima scripts may do for you. Mailing lists are available for any questions on the tools at anima-users@inria.fr


First steps

If this is your first time here, you may be very well interested in installing Anima. This may be done either from source compilation or by installing a binary package of your choosing. Once you have done so and if you are interested in getting our Anima scripts (scripts that use Anima tools to perform complex processing series), look for the installation steps here.






Tools documentation

More detailed documentation on the different tools available in Anima current release is provided here. It includes documentation on the following tool categories:


	Diffusion imaging


	Registration


	Segmentation


	Patient to group comparison


	MR relaxometry


	MR denoising


	Basic image processing tools









Scripts documentation

And finally we provide a documentation of the main scripts available in Anima scripts that basically use Anima to make fancy things like:


	Atlasing


	Diffusion imaging


	Process images of multiple sclerosis patients


	Relaxometry


	Segmentation (brain extraction and multi-atlas segmentation)









Citing Anima or Anima scripts

So far, there is no white paper on Anima or Anima scripts. If you are using Anima for your research, please take the time to:


	cite the relevant papers referenced in the different pages of this documentation


	add a sentence in your acknowledgments section or footnote in the methods part of your paper referencing the RRID [https://www.rrids.org] of Anima: RRID:SCR_017017 or Anima scripts: RRID:SCR_017072 (should be written like this to ensure it is recognized by search bots)


	if possible, add as well the main website address (eg. as a footnote): https://anima.irisa.fr/




Do not hesitate to contact us if you have any doubts anima-users@inria.fr. Thanks !



Licensing

Anima is licensed under an Aferro GPL v3 license. More details are provided in the licensing page.








          

      

      

    

  

    
      
          
            
  
Compiling Anima from source


Requirements

Anima is multi-platform and will compile and run on the major platforms: Windows, OSX and Linux. It requires two major things:


	CMake [http://www.cmake.org] (>= 3.1.0) as a cross-platform Makefile generation software (we use its super-project ability to also download and compile its dependencies)


	A compilation environment: Visual studio 2015 on Windows, Xcode and developer tools on OSX, gcc/g++ or any other C++ compiler on Linux






Code architecture

Anima itself follows a modular structure, organized in 6 main modules, each one associated to a folder on the main repository:


	Math-tools. This module contains generic mathematical tools: statistical tests, statistical distributions, optimizers, spherical harmonics…


	Filtering. This module contains image filters: smoothing, denoising…


	Diffusion. This module includes diffusion model estimation as well as tractography algorithms.


	Registration. This one holds registration tools: resamplers, interpolators, transformations, registration algorithms…


	Segmentation. segmentation tools


	Quantitative MRI. Estimation of quantitative parameters from MRI, MR simulation




Some of these modules are dependent on others (e.g. math-tools is the base to everything). If you know what you are doing, you can choose to compile only a subset of these.



Compilation Instructions

Anima is available as a superproject, including all its modules and links and instructions for its dependencies. Building ANIMA is simple:


	Create an Anima-Public folder


	Inside it, clone the repository from github (use the first line by default, the second if you have set up your SSH keys):




git clone https://github.com/Inria-Visages/Anima-Public.git src
git clone git@github.com:Inria-Visages/Anima-Public.git src






	then, run CMake in a new build folder, change any options if you wish to change the default compilation (which downloads and compiles all dependencies and tools):




mkdir build
cd build
ccmake ../src






	build using your environment (a make or ninja will be enough on Linux and OSX, open Visual Studio on Windows)




And there you go, the bin folder in the build directory will contain all tools described in this documentation.





          

      

      

    

  

    
      
          
            
  
Installing Anima from binary releases

You can download and install Anima as pre-compiled binary packages. We provide regular builds, so-called releases, on oour website for the three major OSes: Windows, macOS and Linux (Ubuntu or Fedora).

To install these builds, simply follow these steps:


	Download the latest binary release from our website [https://anima.irisa.fr/downloads/]


	Unzip the downloaded file to your prefered folder


	Add this folder to your path and the tools will be available from the command line







          

      

      

    

  

    
      
          
            
  
Installing Anima scripts


Requirements

Anima scripts does not require many things. But here is a list of what is required:


	Python [https://www.python.org] (>= 3.0): for most scripts, Python is required. Python 2 or 3 are supported although python 3 and more recent is advised


	numpy, scipy, pandas and pydicom are required for some scripts. The following command should do the trick to install them:




pip3 install numpy pydicom pandas scipy --user






	Anima: either built from source or the releases. Some scripts (e.g. in diffusion) require non public code that are in the releases but not the open-source code unless you have access to our repositories. See there how to compile it from source or install the binaries


	A cluster with an OAR [http://oar.imag.fr] scheduler for the atlasing scripts






Anima scripts installation instructions


	Install Git LFS if you want to clone the additional data repository (if not, skip this step). It may be downloaded from here [https://git-lfs.github.com/]. Follow then the installation instructions (on Mac and linux, simply run the install.sh script as a super-user)


	Get the additional data repository by cloning it or from our website [https://anima.irisa.fr/downloads/].




git clone https://github.com/Inria-Visages/Anima-Scripts-Data-Public.git






	Get the release of Anima scripts from our website [https://anima.irisa.fr/downloads/] or clone the repository using




git clone https://github.com/Inria-Visages/Anima-Scripts-Public.git






	Run the configure.py file inside Anima scripts public folder with your configuration. The default values assume you have followed this guide. An example of use:




python3 configure.py -a ~/Anima-Public/build/bin -s ~/Anima-Scripts-Public -d ~/Anima-Scripts-Data-Public






	
	The options are as follows:

	
	-s should link to where you cloned the Anima scripts repository


	-a should point to where you have the Anima executables


	-d should point to where you have cloned the additional data repository












And now you are all setup to go, you can now read about all scripts in the other sections of the documentation.





          

      

      

    

  

    
      
          
            
  
Diffusion imaging tools

This section describes only the core estimation and tractography features of Anima. For registration of diffusion models and EPI distortions correction, please refer to the registration page.


Diffusion imaging


Multiple compartment models

Anima provides tools for the estimation and processing of multi-compartment models. So far, we have implemented results of our research from papers on estimation and model averaging of MCM. More works on tractography are to come in future releases.


MCM estimation

The animaMCMEstimator tool provides an implementation of MCM estimation from DWI data, following the maximum likelihood method described in [8]. It provides in its public version tools to estimate models including isotropic compartments (free water, isotropic restricted water, dot compartment, and directional compartments (stick, zeppelin, tensor, NODDI [12]). The binary release also allows for the estimation of the DDI compartment model [9].

Example: this estimates a multi-compartment model with two components (-n 2), each anisotropic component being a tensor (-c 3), a free water compartment (-F) and an isotropic restricted water compartment (-R), using the variable projection method (--ml-mode 2) and the Levenberg Marquardt algorithm.

animaMCMEstimator -i DWI.nii.gz -o MCM_n2.mcm -O MCM_n2_b0.nrrd -g DWI.bvec -b DWI.bval -n 2 -c 3 -F -R --optimizer levenberg --ml-mode 2





More options of this tool are available in the documentation of animaMCMEstimator. Interestingly the number of random restarts has a large influence on computation time (but also on precision). We fix it by default to 6 but getting to smaller values will make the estimation faster.

The output file format is the MCM format that may be read by medInria [http://med.inria.fr] from version 3.0. The format is an XML file linking to individual compartment images and weights.

Example:
This .mcm file references image files describing each compartment (together with a flag for its type). In addition, it references a vector image containing for each voxel the respective weights of each compartment.

<?xml version="1.0"?>
<Model>
<Weights>testing_weights.nrrd</Weights>
<Compartment>
<Type>FreeWater</Type>
<FileName>testing_0.nrrd</FileName>
</Compartment>
<Compartment>
<Type>IRWater</Type>
<FileName>testing_1.nrrd</FileName>
</Compartment>
<Compartment>
<Type>Tensor</Type>
<FileName>testing_2.nrrd</FileName>
</Compartment>
<Compartment>
<Type>Tensor</Type>
<FileName>testing_3.nrrd</FileName>
</Compartment>







MCM model averaging

In addition to estimation, we provide two ways of performing model selection and averaging:


	animaMCMEstimator proposes model selection based on AICc criterion (option -M): in that case, all models from 0 to N will be estimated and the one with the optimal AICc will be kept


	The binary Anima tools include one called animaMCMModelAveraging that implements the method proposed in [10]. This method uses outputs from model estimations from 0 to N fiber compartments and their AICc scores (produced by animaMCMEstimator) to compute an average MCM volume with simplification to the optimal number of fibres in each voxel. This tool is not yet open source and as such will be distributed only as binary versions in the Anima releases.




Examples:


	this computes a multi-tensor model at each voxel, with at most 3 anisotropic compartments per voxel (this number being decided based on the AICc criterion).




animaMCMEstimator -i DWI.nii.gz -o MCM_n3_MS.mcm -O MCM_n3_MS_b0.nrrd -g DWI.bvec -b DWI.bval -n 3 -c 3 -FR --optimizer levenberg --ml-mode 2 -M






	this performs model averaging as proposed in [10], with model simplification. It uses as an input two text files, each having on each line an image file name. listMCM.txt contains the list of MCM files to be averaged (from 0 to N anisotropic compartments) and listAIC.txt contains the corresponding AICc files (all these images may be written from animaMCMEstimator).




animaMCMModelAveraging -i listMCM.txt -o MCM_avg.mcm -a listAIC.txt -m MCM_avg_mose.nrrd -C







MCM processing tools

animaMCMAverageImages provides a way to average several volumes of MCM into just one (e.g. an atlas of those images), using the averaging and interpolation framework proposed in [11]. It works in a similar manner to the animaAverageImages described in the basic tools page.

animaMCMScalarMaps provides voxel-wise measures extracted from an MCM image. The currently supported parameters include: isotropic water proportions (free water and isotropic restricted), anisotropic water proportion, apparent diffusivities (mean, axial, radial), fractional anisotropy. These last parameters can be extracted either only from anisotropic compartments (weighted average over them) or the whole model.




DTI estimation and processing


DTI estimation

DTI estimation is performed using two tools in ANIMA, implementing basic matrix-based DTI estimation and extrapolation.

animaDTIEstimator takes as inputs a 4D DWI image, a set of gradient directions and b-values and estimates tensors at each voxel. Gradient directions may be in the medInria format (one line per gradient) or the bvec format. B-values may be specified using a single number or a text file (either one line for each volume b-value or a bval file). Estimated tensors may be degenerated in some places. In that case, the tool outputs either zero values or the degenerated tensors depending on the -K option.

Note: In all Anima tools, the tensors are stored using a 6-component vector image representing the upper diagonal part of the tensors. These values are stored in column-first order.



DTI scalar maps

animaDTIScalarMaps computes the usual fractional anisotropy (FA), apparent diffusivity coefficient (ADC), axial (AD), radial diffusivity (RD), or angle maps to the main magnetic field direction from a tensor image.



Log-Euclidean tools

These tools implement Arsigny et al. log and exponential maps on tensors:


	animaLogTensors computes the log map of tensors. The -S option switches between the vector representation and matrix representation of the log (sqrt(2) scaling factor on non diagonal terms).


	animaExpTensors computes the exponential map of log-vectors. The -S option is the equivalent of the one in animaLogTensors: it divides non diagonal values by sqrt(2).







ODF estimation and processing

In all Anima tools, the ODFs are represented in the real spherical harmonics basis proposed by Descoteaux et al. in [2]. Coefficients are stored in vector images as explained in that publication.


Analytic Legendre polynomials formulaes

It is often tricky to get associated Legendre polynomials analytic formulaes due to their recursive nature. We provide here the animaAnalyticAssociatedLegendre tool that allows to get their formulaes for any order and for m=0.

Example:  this provides a latex formatted list of associated Legendre polynomials up to order 6

animaAnalyticAssociatedLegendre -o 6







ODF estimation

animaODFEstimator estimates ODFs at each voxel using one of two estimation methods: (1) Descoteaux et al. [2] with or without regularization, with or without ODF spherical deconvolution [3], and (2) Aganj et al. [4] providing naturally normalized ODFs at each voxel. The amount of ODF spherical deconvolution may be specified with the -s parameter, the estimation method with -R.

Example: this estimates ODFs of order 6 from DWI.nii.gz using Aganj et al. method.

animaODFEstimator -i DWI.nii.gz -o ODF.nii.gz -g grads.bvec -k 6 -R







Generalized FA

animaGeneralizedFA computes the generalized fractional anisotropy from an image of ODFs stored in our format.





Tractography

Anima implements tractography based on the three supported models: DTI, ODFs and MCM. It can be further divided into two classes of tractography methods: deterministic and probabilistic. All algorithms output fibers either in .vtk, .vtp (VTK format) or .fds (a meta-fibers format that can easily be read by medInria [http://med.inria.fr]).


Deterministic tractography

Deterministic tractography algorithms are described in [5]. They implement FACT [6] for DTI and a modified version of it to handle crossing fibers for ODFs. Those algorithms progress step by step following the local directions provided by the local model available and stopping if some criterions are met (local fiber angle, fiber length, FA threshold, …).


	animaDTITractography implements DTI based deterministic tractography.


	animaMCMTractography implements multi-compartment models based deterministic tractography.






Probabilistic tractography

Probabilistic tractography tools implement for MCM, ODF and DTI our multi-modal particle filtering framework for probabilistic tractography [7]. It relies on the simultaneous propagation of particles and their filtering relative to previous directions and the current model. This method further implements clustering of the particles to retain multi-modality, i.e. branching fibers.


	animaDTIProbabilisticTractography implements the filter for DTI tractography.


	animaODFProbabilisticTractography implements the filter for ODF tractography.


	animaMCMProbabilisticTractography implements the filter for multi-compartment models tractography.






Tractography tools


Application of transformations

animaFibersApplyTransformSerie works in the same way as resampler tools provided on the registration page except that it applies a series of transformations to a set of fibers. Please refer to that section for more details.



Counting fibers in image voxels

animaFibersCounter takes as an input a geometry image -g, and uses the input -i to know how many fibers go through each pixel of that image. The output may be either a fiber count or a fiber proportion (-P flag) i.e. the previous result divided by the number of fibers.



Filtering fibers

animaFibersFilterer uses a regions of interest (labeled) image to filter a set of fibers. The ROI image is a label image provided with the option -r. The -t and -f options can be given multiple times and are used to tell which labels a single fiber should go through (-t) and which labels should not be touched (-f).

Example: this filters the input fibers telling each fiber can be kept if it touches labels 1 and 2, but not 3.

animaFibersFilterer -i fibers.fds -o filtered_fibers.fds -r roi_image.nrrd -t 1 -t 2 -f 3







Extracting MCM properties along tracts

animaTracksMCMPropertiesExtraction is a tool to extract MCM compartment properties along tracts. It benefits from the multi-compartment nature of MCMs to extract the compartment closest to the fiber pathway and attaches the main diffusivity and anisotrpy of that compartment to the corresponding fiber point. It takes as an input a fiber bundle (fiber compatible format) and an MCM image. this work results from published work in [13].
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Registration tools

This part describes registration features in Anima. It includes linear and non linear registration (of anatomical and DTI images), as well as EPI distortion correction and tools for applying series of transformations to images. One note on transformations that come out of these tools: they are all in real coordinates (as opposed to voxel coordinates).


Linear registration

Anima provides linear registration (animaPyramidalBMRegistration) using a block-matching algorithm as presented in [1,2]. It may use BOBYQA or exhaustive optimization for finding matches (--opt parameter). Transformations between blocks may be translations, rigid or affine (experimental) transformations (-t parameter). The result global transform (writable in any ITK supported format) may be a translation, rigid or affine transformation. Both this executable and the next one use a local squared correlation coefficient as the default similarity measure between blocks (--metric parameter). Registration may be initialized from a previously computed transformation (-i option) or from intensity based PCA translation or rigid transformation (-I option). In addition, we have introduced new constrained affine transformations [13] (--ot option) enabling the quantification of growth factors of e.g. the brain on specific chosen directions, and the extraction of the nearest rigid or similarity transformation from an affine registration (--out-rig and --out-sim options) [14].

Example: this registers Floating.nii.gz on Reference.nii.gz using a global affine transform (--ot parameter), on a multi-resolution pyramid of 4 levels (-p parameter), but stopping at the one before last level (-l parameter). For matching, it uses only those blocks where the standard deviation is above 10.

animaPyramidalBMRegistration -r Reference.nii.gz -m Floating.nii.gz -o Floating_On_Ref.nii.gz -O transform_aff.txt -s 10 -p 4 -l 1 --ot 2







Non linear registration


Anatomical registration

Non linear registration of anatomical images (animaDenseSVFBMRegistration) shares many parameters with linear registration. It however estimates a stationary velocity field between two images [3], modeling a dense non linear  transformation between the images. The output is therefore a vector image containing the SVF. This executable implements the method proposed in [4]. It requires that the two input images have the same sizes and orientations. It is usually highly recommended to perform non linear registration after global rigid/affine registration.

Example: this registers Floating_aff.nii.gz on Reference.nii.gz on a multi-resolution pyramid of 3 levels (-p parameter), stopping at full resolution (-l parameter).

animaDenseSVFBMRegistration -r Reference.nii.gz -m Floating_aff.nii.gz -o Floating_On_Ref.nii.gz -O transform_nl.nii.gz -p 3 -l 0







DTI registration

Non linear DTI registration (animaDenseTensorSVFBMRegistration) implements the same algorithms as in scalar images registration with finite strain tensor reorientation or preservation of principal direction (PPD). Parameters are the same except the similarity metrics which implement those proposed in [4] (tensor oriented generalized correlation). Note that the block variance may be much smaller for tensors and it is advised to set the minimal variance (-s) to 0 by default.



MCM registration

Non linear MCM (multi-compartment models) registration (animaDenseMCMSVFBMRegistration) implements the same algorithms as in scalar images registration with finite strain tensor reorientation or preservation of principal direction (PPD). Parameters are the same except similarity metrics which implement those proposed in [12] (MCM SSD and correlation surrogate). As for tensors the block variance may be much smaller than for scalar images and it is advised to set the minimal variance (-s) to 0 by default.




EPI artifacts correction


Eddy current distortion correction

Anima includes a simple, yet experimental, tool for Eddy current distortion correction animaEddyCurrentCorrection. It performs by registering linearly then non linearly each sub-volume of the EPI series to the first sub-volume. Each non linear transformation is computed only in the phase encoding direction as suggested by other publications. Please note that the Eddy current distortion correction tool does not include susceptibility distortion correction that is accounted for by the distortion correction tool in the next section.

Example: this will perform Eddy current distortion correction on DiffVolume4D.nrrd in the direction specified by -d (-d 1 denotes the Y direction in voxel coordinates).

animaEddyCurrentCorrection -i DiffVolume4D.nrrd -o DiffVolume_Corrected.nrrd -d 1







Susceptibility distortion correction

Anima proposes two tools for EPI distortion correction of images:


	animaDistortionCorrection which implements the method proposed by Voss et al. [5]


	animaBMDistortionCorrection which implements the symmetric block-matching method proposed in [6]. It uses the same kind of parameters as previous block-matching registration algorithms.




From our experience, we found out it is best to use both for correcting for distortion: animaDistortionCorrection being used as the initialization for animaBMDistortionCorrection. Both tools use two 3D images with reversed phase encoding directions as their input, the direction that was used in the acquisition may be specified using the -d parameter (0 = X axis, 1 = Y axis, 2 = Z axis). The transformation found may then be applied to a whole 4D volume using our resampling tools.

Example: this first computes an initial correction field using Voss et al. method, with a smoothing sigma of 2 voxels (-s parameter). Then it starts from the initial transformation Init_Correction.nii.gz and computes a more precise BM_Correction.nii.gz dense transformation (note that contrary to previous algorithms, these transformations are not SVFs but dense displacement fields). It also outputs the average of AP and PA images after correction into BM_Correction.nii.gz.

animaDistortionCorrection -f AP_Image.nii.gz -b PA_Image.nii.gz -o Init_Correction.nii.gz -s 2
animaBMDistortionCorrection -f AP_Image.nii.gz -b PA_Image.nii.gz -i Init_Correction.nii.gz -o BM_Corrected_Image.nii.gz -O BM_Correction.nii.gz








Symmetry plane computation and constrained registration

In addition to traditional registration, we provide tools to compute and use the inter-hemispheric symmetry plane of an image [7,8]. This is based on two tools:


	animaSymmetryPlane [7] computes the symmetry transformation of an image (about its inter-hemispheric plane) and outputs both that transform (-O parameter) and a transformation that brings the image on its symmetry plane (--out-realign-trsf)


	animaSymmetryConstrainedRegistration implements constrained global rigid registration [8] utilizing two input symmetry plane transforms to restrict the search space.




Example: If one wants to register two images A.nii.gz and B.nii.gz, three steps will be necessary: realign A on its symmetry plane, realign B on its symmetry plane, and use both transformations as inputs to make a constrained registration of A and B. The output transformation brings the original B on the original A with a rigid transformation. The -F option activates a faster constrained registration but which may lose a little accuracy (see [8]).

animaSymmetryPlane -i A.nii.gz -o A_realign.nii.gz --out-realign-trsf A_sym.txt
animaSymmetryPlane -i B.nii.gz -o B_realign.nii.gz --out-realign-trsf B_sym.txt
animaSymmetryConstrainedRegistration -r A.nii.gz -m B.nii.gz --ref-sym A_sym.txt --moving-sym B_sym.txt -F -o B_on_A.nii.gz -O B_on_A_rig.txt







Transformation tools (applying, arithmetic, jacobian)


EPI distortion correction

EPI distortion correction works in a slightly different way as other resampling tools. The tool provided is called animaApplyDistortionCorrection. It takes as inputs a 4D image with regular phase encoding direction (-f parameter) and optionally a 4D image with reversed phase encoding direction (for better correction, -b parameter). Then, using transformations coming from the previous tools, it corrects for distortion (if -b is provided the output will be the average of the two corrected images).

Example: this applies the previously obtained transormation to the whole DWI volume to correct its distortion.

animaApplyDistortionCorrection -f DWI_AP.nii.gz -t BM_Correction.nii.gz -o DWI_Corrected.nii.gz







Constructing series of transformations descriptions

All other transform application tools require the input transformations to be given as an XML file which describes a series of transformations. It can take several option but the simple example is the following:

animaTransformSerieXmlGenerator -i transform_aff.txt -i transform_nl.nii.gz -o transforms.xml





It creates the description of the two transformations (the specified order is the order in which they will be applied).



Applying a transformation to images

Applying a transformation requires the previous XML description file. Three tools are available:


	one for scalar images - animaApplyTransformSerie


	one for tensor images - animaTensorApplyTransformSerie


	one for multi-compartment model images [10] animaMCMApplyTransformSerie




All tools require a geometry image to tell in which space the resampling will take place (-g parameter). If the transformation series is globally linear, it may be applied to a gradient file of diffusion images. animaApplyTransformSerie now supports 3D and 4D images (in the latter case, the transformation is applied independently to each of the 3D sub-volumes). Diffusion model resamplers have an option to either apply finite strain re-orientation of the models or preservation of principal direction (PPD) re-orientation: -P activates PPD re-orientation, the default is finite strain.

Example: this applies the transforms in transforms.xml to resample Floating on Reference.

animaApplyTransformSerie -i Floating.nii.gz -g Reference.nii.gz -t transforms.xml -o F_resampled.nii.gz







Applying a transformation to fibers or meshes

Anima also comes with a tool to apply transformations obtained from image registration to meshes or fibers. It accepts vtk, vtp and fds (our fiber format for medInria [https://med.inria.fr]) files. This tool, named animaFibersApplyTransformSerie, works in the same way as animaApplyTransformSerie. The two main differences are the following:


	the input transformation is inverted by default as image transformations are encoded in Anima as the inverse of the underlying space transformation. This way, animaApplyTransformSerie and animaFibersApplyTransformSerie are similar in their uses. Use the -I option to invert the transformation series if necessary.


	There is no need for a geometry as this is specific to images






Computing the Jacobian of a transformation

A tool to compute the Jacobian or its determinant of a displacement field transformation is provided with the tool animaDisplacementFieldJacobian. If may handle SVF transformations using the -S option. More options for this tool are provided when using the -h option.

Example: this computes the Jacobian matrix of the input SVF after its exponentiation. The Jacobian matrix is stored as a 9 component vector image stored in row first.

animaDisplacementFieldJacobian -i inputField.nrrd -S -o dispFieldJacDeterminant.nrrd







Linear transformations arithmetic

We provide a tool named animaLinearTransformArithmetic to compose and perform log-Euclidean operations on linear transformations as proposed by Arisgny et al. [9]. The tool proposes regular composition (-c), addition (-a), subtraction (-s), multiplication by a constant (-M), division by a constant (-D) in the log-Euclidean framework.

Example: this performs the log-Euclidean addition of the two linear input transformations (in the ITK format) in the log-Euclidean framework.

animaLinearTransformArithmetic -i transform.txt -a addedTransform.txt -o outputTransform.txt







Dense field transformations arithmetic

We provide a tool named animaDenseTransformArithmetic to compose and perform log-Euclidean operations on dense field (diffeomorphic) transformations as proposed by Arisgny et al. [11]. The tool proposes regular composition or BCH approximation to the composition of SVFs in the log-Euclidean framework (-c). It can also take the exponential of an SVF, dense diffeomorphism logarithm is the only operation not implemented yet.
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Segmentation tools

This part describes segmentation features in Anima. It, as of now, includes multiple sclerosis segmentation tools and graph-cut segmentation.


Basic segmentation tools

We provide a set of basic tools related to segmentation that can be used easily.


Dice score computation

animaDiceMeasure computes the Dice score between two labeled segmentations. For binary images, it computes the Dice or Jaccard scores. For multi-labeled images, it either outputs the individual label scores or the total overlap score as in Klein et al. [1] (-T option).



Image thresholding

animaThrImage thresholds an image, using one or several thresholds.

Example: this thresholds the input Image.nii.gz to keep only voxels whose values are between 0.5 and 1.5.

animaThrImage -i Image.nii.gz -t 0.5 -u 1.5 -o BinaryImage.nii.gz





animaOtsuThrImage computes the Otsu automatic thresholding in several classes of an input image.



Majority voting label fusion

animaMajorityLabelVoting provides an implementation of majority voting: i.e. a fusion where each voxel is affected the most probable occurence of a set of labels. It takes as an input a list of segmentation images (-i: either as a 4D image or a text file with each line indicating the filename of a segmentation) and outputs the majority vote in an image given with -o.



Image holes filler

animaFillHoleImage provides a simple tool that fills small holes in segmentations that are not connected with the background.



Image masking

animaMaskImage simply takes an image and a binary mask and applies the mask to the input image.



Isosurface extraction

animaIsosurface takes as an input image and extracts its isosurface at the level given by the -t option. Decimation and smoothing of the resulting surface can also be controlled.




Graph cut segmentation

We provide an implementation of Lecoeur et al. graph cut segmentation algorithm [1], using the spectral gradient for multimodal images. It is implemented in the animaGraphCut tool.



Multiple sclerosis lesions segmentation

We provide an implementation of one of the multiple sclerosis (MS) segmentation algorithms developed in the Visages team [2,3]. This method is based on a tissue classification of multiple channel images and uses graph cut to delineate T2 hyper-intense lesions. It takes as an input three modalities among T1, T2, DP and FLAIR as well as a brain mask.

Example: this command line uses T1, T2 and FLAIR images as an input, as well as brain_mask.nii.gz as a skull-stripping mask and compute their GCEM segmentation.

animaGcStremMsLesionsSegmentation -m brain_mask.nii.gz -a 1 --rej 0.2 --min-fuzzy 1 --max-fuzzy 2 --intT2 3 --intFLAIR 2 --rb --ml 3 -i T1.nii.gz -j T2.nii.gz -l FLAIR.nii.gz --ini 2 -o lesion_seg.nii.gz --out-csf csf_seg.nii.gz --out-gm gm_seg.nii.gz --out-wm wm_seg.nii.gz --out-gc gc_seg.nii.gz





The parameters are as follows:


	-a option specifies the type of algorithm (0 is STREM [2], 1 is GCEM [3]).


	--rej : percentage of outliers rejection


	--min-fuzzy : minimal value for fuzzy rules


	--max-fuzzy : maximal value for fuzzy rules


	--ml : minimal lesion size (mm3)


	--ini : initialization method (0: atlas, 1: based on DP, 2: based on FLAIR)


	-o : output lesion segmentation


	--out-csf : output CSF map


	--out-gm : output GM map


	--out-wm : output WM map






Segmentation validation tools

We now provide tools that were used for the validation of the MS segmentation challenge [http://go.nature.com/2SW1DhA] held in 2016 and that can be used for other tasks as well.


Dice measure

Anima comes with two tools for computing the Dice measure:


	animaDiceMeasure computes Dice scores between two label images (i.e. with each pixel having an integer label). It can either output the Dice scores for each label individually or compute the total overlap score as proposed by Klein et al. [5] (-T option)


	animaFuzzyDiceMeasure computes the generalized Dice score between fuzzy segmentations of a structure as proposed by Crum et al. [6]




Both tools have an option to output the Jaccard score instead of the Dice score (-J option), both scores being related by a monotonic function.



Detected components

animaDetectedComponents provides an evaluation tool that counts the number of connected components in a reference binary segmentation that are actually detected by a test segmentation. This does not mean that the components are very well segmented but rather that the test segmentation detect sufficiently the components. The output is a CSV file detailing for the reference image the number of connected components, their sizes and if they were detected by the test segmentation.



Segmentation performance analyzer

animaSegPerfAnalyzer includes all metrics that were computed for the MS segmentation challenge at MICCAI in 2016. This tool was used to compute the results available as supplementary material here [https://doi.org/10.5281/zenodo.1307652]. Please refer to our article [4] for more details on the measures.
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Group comparison tools


Patient to group comparison


General patient to group comparison

Patient to group comparison tools provides ways to compare a single patient image (scalar, log-tensor fields, vector fields, ODFs,…) to a group (population) of control images. The most general executable for it is animaPatientToGroupComparison. It handles any vector image type that represents data in a vector space (e.g. scalar images, log-tensor images obtained from animaLogTensors, stacked multimodal data…). It implements the test proposed in [1] but without direction sampling of the data. It also handles dimensionality reduction through PCA on the control database (-E and -e options).

Example: this tests at each voxel testedImage against the list of controls (specified in listControls.txt: one line = one image to load). For speed reasons, it is highly desirable to use computationMask.nii.gz, which can be the intersection of brain masks of the controls and the tested image. It outputs p-values and z-scores of the test.

animaPatientToGroupComparison -i testedImage.nii.gz -I listControls.txt -o zScore.nii.gz -O pValues.nii.gz -m computationMask.nii.gz







ODF patient to group comparison

animaPatientToGroupODFComparison implements the same test as in [1] but for ODF data. In addition to parameters of animaPatientToGroupComparison, the user has to specify a set of gradient directions (bvec or text file) on which the ODF will be sampled.



Along fibers patient to group comparison

animaPatientToGroupComparisonOnTracks implements the same test as in [1] but is doing so for properties along fiber tracts. It takes as an inputs fiber compatible formats (vtk, vtp, fds), a single one for the patient and a text file list of reference fibers. For each point of the patient fiber tract and each attribute in the fibers, it will compute the associated p-value. As for its voxelwise counterparts, it is advised to use FDR correction to correct for multiple comparisons afterwards.



Non local patient to group comparison

Non-local patient to group comparison tools implement the method proposed in [2] for DTI images. These consist of three tools. The main one is animaNLMeansPatientToGroupComparison which performs the comparison itself by looking for patches around a given position, similarly to NL-Means denoising. It adds four options (-d, -D, --dbcovave, --dbcovstd) to perform the average and standard deviation tests on the test image. Those four options require images as an input. They are provided by two other tools:


	animaLocalPatchMeanDistance takes as an input the list of controls and provides two outputs: the one from -o is to be used for -d input of animaNLMeansPatientToGroupComparison, the one from -O is to be used for -D input of animaNLMeansPatientToGroupComparison)


	animaLocalPatchCovarianceDistance takes as an input the list of controls and provides two outputs: the one from -o is to be used for --dbcovave input of animaNLMeansPatientToGroupComparison, the one from -O is to be used for --dbcovstd input of animaNLMeansPatientToGroupComparison)







Group comparison tools

We provide an implementation of a population comparison tool proposed by Whitcher et al. [3] and used for neonates comparison in [4]. This test is based on the computation of inter- and intra-group distances computation and their use to derive a statistical test of groupies voxel differences. As such our implementation uses as an input vector images for which a L2 distance may be computed (such as log-vectors of tensors or scalar images) and outputs a map of p-values (not corrected for multiple comparisons (see next section).

Example: this computes the voxelwise Cramers tests p-values given its inputs. dataList.txt lists on each line the input files of all groups, firstGroup.txt and secondGroup.txt lists the indexes of patients in each group, starting with index 0.

animaCramersTest -l dataList.txt -m computationMask.nrrd -o outputPValues.nrrd -f firstGroup.txt -s secondGroup.txt







Multiple comparisons correction

When doing the above mentioned tests, multiple comparisons are being made that need to be corrected for. animaFDRCorrectPValues implements FDR correction as presented by Benjamini and Hochberg [5]. It provides as an output thresholded p-values at q-value specified by the -q option. Similarly, animaFibersFDRCorrectPValues implements FDR correction on fibers, treating each point of the fibers as a single test.



Disease burden scores

Linked to a work presented at ISMRM 2021 [6], we have introduced a disease burden score tool, set to compute on a n input fiber bundle the percentage of fibers being impacted by abnormalities along their trajectories as detected by the patient to group comparison along fibers. This tool is called animaFibersDiseaseScores.



Low memory tools

All preceding tools have their animaLowMem counterparts, as they usually require a lot of memory to run which may not be available on a single computer. These low memory tools include options to split the input images in every direction and process either a single sub-part of them or all of them in a sequential order.

animaMergeBlockImages can then use the output description file and a geometry image to rebuild the final result.

Warning: these low memory tools are much slower as they spend most of their time reading images. However, they can be run on a cluster if available.



References


	Olivier Commowick, Adil Maarouf, Jean-Christophe Ferré, Jean-Philippe Ranjeva, Gilles Edan, Christian Barillot. Diffusion MRI abnormalities detection with orientation distribution functions: A multiple sclerosis longitudinal study. Medical Image Analysis, 22(1):114-123, 2015.


	Olivier Commowick, Aymeric Stamm. Non-local robust detection of DTI white matter differences with small databases. 15th International Conference on Medical Image Computing and Computer Assisted Intervention, Oct 2012, Nice, France. 15 (Pt 3), pp.476-84, 2012, LNCS.


	B. Whitcher, J.J. Wisco, N. Hadjikhani and D.S. Tuch. Statistical group comparison of diffusion tensors via multivariate hypothesis testing. Magnetic Resonance in Medicine, 57(6):1065-1074, June 2007.


	O. Commowick, N. I. Weisenfeld, H. Als, G. B. McAnulty, S. Butler, L. Lightbody, R. M. Robertson and S. K. Warfield. Evaluation of White Matter in Preterm Infants With Fetal Growth Restriction, In Proceedings of the Workshop on Image Analysis for the Developing Brain, held in conjunction with MICCAI’09, September 2009.


	Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), Vol. 57, No. 1 (1995), pp. 289-300.


	O. Commowick, R. Hédouin, C. Laurent, J.-C. Ferré. Patient specific tracts-based analysis of diffusion compartment models: application to multiple sclerosis patients with acute optic neuritis. ISMRM 2021.








          

      

      

    

  

    
      
          
            
  
Relaxometry tools


Estimation


T1 relaxation

We include an implementation of the DESPOT1 [1] algorithm for T1 relaxation time estimation: animaT1RelaxometryEstimation. It optionally can take a B1 inhomogeneity map as an input to correct for it (-b parameter). It outputs two images: T1 relaxation times (-o output) and M0 map (proportional to proton density, -O output).



T2 relaxation

We include two ways to estimate T2 relaxation times from T2 relaxometry sequences. Those two algorithms suppose acquisitions were made with an equal echo spacing that is specified to the algorithm. Those two tools are:


	animaT2RelaxometryEstimation estimates T2 relaxation using the regular exponential decay equation with a single T2 value. It may take an input T1 map for better estimation, and outputs M0 and T2 maps.


	animaT2EPGRelaxometryEstimation estimates T2 relaxation using the EPG algorithm with a single T2 value, to account for stimulated echoes due to B1 inhomogeneity [2]. It may take input T1 and B1 maps for better estimation, and outputs M0 and T2 maps.






Multi-compartment T2 estimation

We provide from Anima 3.0 new tools for multi-compartment T2 and myelin water fraction estimation. We also provide implementations of previous methods from the literature on multi-peak T2 estimation. While this second approach is appealing, we find it more stable to use multi-compartment T2 estimation rather than multi-peak and rather provide those for comparison purposes.


	animaGammaMixtureT2RelaxometryEstimation implements variable projection estimation of the parameters and weights of three T2 Gamma distributions using two different modes (toggled by the -U option) [3,4]: only middle T2 compartment mean estimation or all class mean parameters estimation. In both cases, all weights are deduced from the estimated parameters using variable projection


	animaGMMT2RelaxometryEstimation implements, for robustness to clinical acquisitions, a fixed parameter estimation of a Gaussian T2 mixture [7]. In this implementation, only the weights of the three T2 compartments are estimated, their PDFs being fixed according to prior knowledge on the tissues.


	animaMultiT2RelaxometryEstimation provides an implementation of several methods of the literature for multi-peak T2 estimation [2,5,6]. It provides several types of regularization: Tikhonov, Laplacian or non local regularization. Again these methods make the deduction of myelin water fraction more difficult and quite sensitive to the regularization.







MRI simulation

Several MR simulation tools are included in ANIMA, which simulate sequences from relaxation time maps. All of them are described in detail here [https://team.inria.fr/empenn/files/2017/08/mr_simulation_guide.pdf].



References


	Deoni, S. High-resolution T1 mapping of the brain at 3T with driven equilibrium single pulse observation of T1 with high-speed incorporation of RF field inhomogeneities (DESPOT1-HIFI). J Magn Reson Imaging 26(4):1106–1111, 2007.


	Kelvin J Layton, Mark Morelande, David Wright, Peter M Farrell, Bill Moran, Leigh Johnston. Modelling and estimation of multicomponent T2 distributions. IEEE transactions on medical imaging, 32(8):1423–34, 2013.


	Sudhanya Chatterjee, Olivier Commowick, Onur Afacan, Simon K. Warfield, Christian Barillot. Multi-Compartment Model of Brain Tissues from T2 Relaxometry MRI Using Gamma Distribution. ISBI 2018.


	Sudhanya Chatterjee, Olivier Commowick, Simon K. Warfield, Christian Barillot. Multi-Compartment T2 Relaxometry Model Using Gamma Distribution Representations: A Framework for Quantitative Estimation of Brain Tissue Microstructures. ISMRM 2017.


	Prasloski et al. Applications of stimulated echo correction to multicomponent T2 analysis. MRM, 67(6):1803-1814, 2012.


	Yoo et al. Non-local spatial regularization of MRI T2 relaxation images for myelin water quantification. MICCAI, pp 614-621, 2013.


	S. Chatterjee, O. Commowick, O. Afacan, B. Combes, A. Kerbrat, S.K. Warfield, C. Barillot. A 3-year follow-up study of enhancing and non enhancing multiple sclerosis lesions in MS patients with clinically isolated syndrom using a multi-compartment T2 relaxometry model, ISMRM, 2018.








          

      

      

    

  

    
      
          
            
  
Denoising tools


Noise generation

animaNoiseGenerator adds Gaussian or Rician noise to a scalar image at a user specified SNR (an external reference input image is necessary to compute the average reference signal value). The -n may be used to output multiple samples of noisy images from the input.

Example: this adds Gaussian noise (relative to the average signal computed from refSignalImage.nii.gz) to Image.nii.gz. It will provide as outputs 10 images named OutputImage_??.nii.gz

animaNoiseGenerator -i Image.nii.gz -o OutImage.nii.gz -G -n 10 -r refSignalImage.nii.gz







NL-Means denoising

NL-Means denoising is an implementation of the two papers from the team to denoise images corrupted by Gaussian [1] or Rician noise [2].


NL-Means for scalar images

animaNLMeans implements patch-based denoising for scalar images, considering it as a single image without a temporal dimension. It includes all parameters described in [1], including patch half size (real size being 2N+1), patch half search neighborhood, beta parameter for weighting, … One can choose between [1] and [2] with the -W option.

Example: this performs denoising of Image.nii.gz with the default parameters, a beta parameter of 0.5 and assuming Rician noise.

animaNLMeans -i Image.nii.gz -o OutImage.nii.gz -W 1 -b 0.5







NL-Means for images with a temporal dimension

animaNLMeansTemporal works in the same way as animaNLMeans except that it considers the last dimension of the input image as a temporal dimension and therefore processes each temporal volume independently (useful e.g. for DWI images).
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Basic image processing tools


Image arithmetic

animaImageArithmetic allows you to add, subtract, multiply or divide images either by a constant or another image. It relies on ITK filters.

Example: this computes Image1 - Image2 into the result image Diff.nii.gz

animaImageArithmetic -i Image1.nii.gz -s Image2.nii.gz -o Diff.nii.gz







ROI intensities statistics

animaROIIntensitiesStats provides statistics (mean, max, median, variance) in regions of interests on an image or a list of images in a text file.

Example: this computes the median in each label of roi_image.nii.gz of the input image image.nii.gz. The output is given in a csv file data.csv

animaROIIntensitiesStats -i image.nii.gz -r roi_image.nii.gz -o data.csv -s median







Image averaging

animaAverageImages provides a tool to average multiple images (vector or scalar) into a single one.

Example: this computes the average from all images listed in listFiles.txt. listMasks.txt specifies a list of masks of interest applicable for each image.

animaAverageImages -i listFiles.txt -m listMasks.txt -o outputImage.nrrd







Image collapse

animaCollapseImage is a simple tool for converting a vector image (e.g. 3D vector file) into a (N+1)D image (e.g. a 4D scalar image).



Images concatenation

animaConcatenateImages takes several images and concatenates them into an (N+1)D image. Options allow to set the origin and spacing of the new dimension, as well as an optional base (N+1)D volume to which the additional images will be concatenated.

Example: this will concatenate Base, Addon1 and Addon2 into a single (N+1)D image on the last dimension.

animaConcatenateImages -i Addon1.nii.gz -i Addon2.nii.gz -b Base.nii.gz -o Data.nii.gz







Image resolution changer

animaImageResolutionChanger provides a way to change the image resolution (in the sense voxel resolution in mm). It automatically recomputes the origin and adapted image size from the old and new resolutions. The tool works for 3D (scalar or vector image), and 4D scalar images. For 4D images, the resolution change is made on  sub 3D images.

Example: this resamples the input image so that its voxel resolution is 2x2x2 mm.

animaImageResolutionChanger -i Image.nrrd -o Image_Result.nrrd -x 2 -y 2 -z 2







Image vectorization

animaVectorizeImages takes several ND scalar volumes and outputs a single ND vector image. It can also take a text file listing several volumes as the input.

Example: this will create a vector image with vector dimension 2, where the first dimension will contain Image1 and the second Image2.

animaVectorizeImages -i Image1.nii.gz -i Image2.nii.gz -o VectImage.nii.gz







Connected components

animaConnectedComponents computes connected components from a binary image. Optionally, it may take a minimal component size, under which the components will be removed.



Image conversion

animaConvertImage serves several roles: it can display information on an image, reorient it and write it to another file format.

Example: this reorients the image in the coronal plane, displays its information (-I) and saves the result in a NRRD file.

animaConvertImage -i Image.nii.gz -I -R CORONAL -o Image_Coronal.nrrd







Shapes format conversion

animaConvertShapes allows you to convert shapes (fibers, surfaces, etc.) between file formats supported by Anima (vtk, vtp, fds, csv).

Example: this converts a VTK ascii file to a VTP file.

animaConvertShapes -i Shape.vtk -o Shape.vtp







Image cropping

animaCropImage extracts a sub-volume from an image using the ITK ExtractImageFilter. The lower case arguments(x<xindex>, y<yindex>, z<zindex>, t<tindex>) are the starting indexes of the input region to keep. The default value is 0. The upper case arguments (X<xsize>, Y<ysize>, Z<zsize>, T<tsize>) are the sizes of the input region to keep. The default value is the largest possible size given the corresponding indexes.

If you give arguments size of zero the corresponding dimension will be collapsed.

Example: for a 4D image 4x4x4x4, the arguments --xindex 1 --zindex 1 --zsize 2 --tindex 3 --tsize 0 will result in an image 3x4x2 where the x dim corresponds to [1,2,3] of the input, y[0,3], zindex[1,2] and tindex is collapsed, only the last sequence has been kept.



Image smoothing

animaImageSmoother simply applies Gaussian smoothing with a specific sigma value to an image using Young - Van Vliet’s recursive smoothing filter implemented in ITK [1].



Morphological operations

animaMorphologicalOperations computes usual morphological operations (erosion, dilation, opening, closure), with a specified radius expressed in millimeters.
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Atlasing scripts

This section describes atlasing scripts of Anima scripts. These scripts are special in Anima scripts as they use shell and the OAR [http://oar.imag.fr] job submission system.


Overall goal

Two scripts are available here that have to be run on a OAR cluster to work properly. They follow a modified Guimond et al. [1] method to compute an average unbiased atlas from respectively anatomical or diffusion tensor images.

The method proceeds iteratively by registering the images onto a current reference to compute the reference at the next iteration. The main modifications with respect to the original Guimond et al. method is to use the log-Euclidean framework on diffeomorphisms [2] to compute the average transformations.

The two scripts then differ on the registration method used: anatomical image non linear registration [3] or DTI non linear registration [4].



Data structure for atlas construction

The datasets are supposed to be named correctly and placed in the right folders so that the atlasing scripts will find them. Data should be organized like this:

Main folder
+-- Images
|  +-- Prefix_1.nii.gz
|  +-- Prefix_2.nii.gz
|  +-- Prefix_3.nii.gz
|  .
|  .
|  .
+-- Masks
|  +-- Mask_1.nii.gz
|  +-- Mask_2.nii.gz
|  +-- Mask_3.nii.gz
|  .
|  .
|  .





The main folder can be located anywhere, the prefix of the images names (i.e. Prefix) and their folder name (i.e. Images) are up to the user (but should not include spaces, special characters or accentuated characters by precaution). The images folder contains the images from which the atlas will be built (anatomical or DTI depending on the script), all suffixed from 1 to N without losing contiguity.

The Masks folder and the subsequent names should be as shown here. They concern however only the anatomical images script for which they provide the mask of interest for each image that will be considered for average image construction.



Atlasing scripts

With this folder structure, two scripts are available that follow the same idea: animaBuildAnatomicalAtlas.py for anatomical atlas creation and animaBuildDTIAtlas.py** for DTI atlas creation. Both should be run from an OAR frontend machine as they start many jobs (N per iteration where N is the number of images, times a total of M iterations).

To run them, use one of the commands that follow after going to the main folder in the terminal (depending if you are making a DTI atlas or anatomical one):

~/Anima-Scripts-Public/atlasing/anatomical/animaBuildAnatomicalAtlas.py -p Images/Prefix -n <N> -i <M> -c <nCores>
~/Anima-Scripts-Public/atlasing/dti/animaBuildDTIAtlas.py -p Images/Prefix -n <N> -i <M> -c <nCores>





This runs an atlas construction over N images, performing M iterations of atlas creation and asking for nCores cores on each computer of the cluster for each job.

Results are provided in the main folder in the form of an average image (averageForm<M>.nii.gz or averageDTI<M>.nii.gz depending on the script). Transformations bringing each individual image on the atlas can be found in the residualDir subfolder added by the script:


	Prefix_<i>_linear_tr.txt: affine transform from image i toward averageForm<M-1>.nii.gz


	Prefix_<i>_nonlinear_tr.nrrd: non linear transform from affinely transformed image i toward averageForm<M-1>.nii.gz


	sumNonlinear_inv_tr.nrrd: average transformation whose inverse should be applied to get transformed images onto averageForm<M>.nii.gz






Online atlasing (iterative centroid)

Online atlasing as explained in [6] works in a different way as the previous scripts. Assuming you hav an atlas output products from the previous scripts, the iterative centroid algorithm adds additional images to form an atlas without having to create it from the ground up. Its call works in the same way as the previous ones:

~/Anima-Scripts-Public/atlasing/anatomical_iterative_centroid/animaBuildAnatomicalICAtlas.py -p Images/Prefix -s <startPoint> -n <N> -c <nCores>





The -s option gives the number of images already in the atlas. The script will then use the original atlas and additional images up to N to compute the new atlas. It assumes the same data structure as the previous scripts



Longitudinal atlasing

A longitudinal atlas is constituted of a set of 3D atlases each representing an average model at a given age. In this case, the 3D atlases are computed up to a rigid transformation accounting both for global and local transformation in the unbiasing step.

We provide in the following sub-sections the necessary scripts to compute longitudinal atlases as detailed in [5], strongly based on the previous scripts. A preliminary weighting step is necessary such that, in the creation of an atlas at time t, more importance is given to subjects closer in age to t.


Weighting

This script takes as an input all of the following:


	List of all images paths in a txt file (i.e. image.txt). One path per line


	List of associated ages in an other txt file (i.e. age.txt)


	List of desired atlas ages in an other txt file (i.e. atlasAge.txt)




~/Anima-Scripts-Public/atlasing/longitudinal_preparation/animaComputeLongitudinalAtlasWeights.py -a age.txt -i image.txt -o outputFolder -n n -A atlasAge.txt -p Images/Prefix





This script call runs the preparation of everything needed to compute a 4D atlas composed of a set of 3D atlases representatives of ages contained in atlasAge.txt, made using about n subjects. It also prepares the folder structure to compute the different atlases in the following step.

output folder
+-- atlas_1
.
.
.
+-- atlas_i
|  +-- Images
|  |  +-- Prefix_1.nii.gz
|  |  .
|  |  .
|  |  .
|  +-- weights.txt
.
.
.







Atlasing scripts with longitudinal parameters

After the preparation step, to compute each sub-atlas i, simply run one of the atlasing scripts with the appropriate options:

cd outputFolder/atlas_i
~/Anima-Scripts-Public/atlasing/anatomical/animaBuildAnatomicalAtlas.py -p Images/Prefix -n <N> -i <M> -c <nCores> --rigid -w weights.txt -b 2





In the previous line, animaBuildAnatomicalAtlas may be replaced by animaBuildDTIAtlas to compute a DTI longitudinal atlas.
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Diffusion imaging scripts

This section describes diffusion imaging preprocessing and model estimation scripts of Anima scripts.


Diffusion images preprocessing script

This script combines several preprocessing steps to prepare data with the following steps (in that order):


	if -D option is given, correct gradients to match requirements from Anima (in real space i.e. the scanner space)


	Eddy current correction and motion correction using the experimental tool from Anima animaEddyCurrentCorrection


	distortion correction using the method proposed in [1]


	reorientation of the DWI volume to be axial on the z-axis and have no reversed axis


	Denoising using the NL-Means method [2]


	Brain masking using the brain extraction script


	DTI estimation using the animaDTIEstimator tool




Some of these steps may be discarded using the --no-\* options available in the script help. The brain masking step is performed either on a provided T1 image or on the DWI first sub-volume. For distortion correction, the reversed PED image has to be provided with the -r option and the direction of the PED with the -d option. If no reversed PED image, and the T1 is, distortion will be corrected by a simple B0 to T1 non linear registration.

Warning: gradients reworking is known to work only with Siemens acquisitions, not tested on other scanners.

Example:

~/Anima-Scripts-Public/diffusion/animaDiffusionImagePreprocessing.py -b Diff.bval -D Dicom/* -r B0_PA.nii.gz -d 1 -t T1.nii.gz -i Diff.nii.gz





Results of this scripts are:


	Diff_preprocessed.nrrd: preprocessed diffusion 4D image


	Diff_preprocessed.bvec: preprocessed diffusion gradient vectors


	Diff_brainMask.nrrd: diffusion brain mask


	Diff_Tensors.nrrd: estimated tensors


	Diff_Tensors_B0.nrrd: estimated tensors B0 image


	Diff_Tensors_NoiseVariance.nrrd: estimated noise variance from the tensor estimation (actually includes noise and model underfit error)






Multi-compartment models estimation script

This script is more experimental as the multi-compartment model estimation tool in Anima [3] is currently undergoing quite some changes. However, it works well and we have a script that uses preferably the results of the diffusion preprocessing script as an input.

It mainly has two modes: one for HCP-like datasets that have high quality acquisitions and enable less constrained models, and one for regular clinical data with less estimation demanding models. Several options are still available:


	-t: choose the model type (as explained in diffusion documentation


	-n: maximal number of anisotropic compartments (ideally choose a number in between 1 and 3)


	–hcp: add some additional compartments like stationary water to handle specific aspects of HCP data [https://www.humanconnectome.org]


	–no-model-simplification and -S control model selection / averaging option. If none are set, the script will by default follow the method proposed in [4]: compute all models from 0 to N compartments and “average” them according to their likelihood (according to the AIC criterion). If -S is set, a faster model selection done at the stage of the stick model estimation is performed. If –no-model-simplification is set, a pure N model estimation is done without model selection.




Example:

~/Anima-Scripts-Public/diffusion/animaMultiCompartmentModelEstimation.py -t tensor -n 3 -i Diff_preprocessed.nrrd -g Diff_preprocessed.bvec -b Diff.bval -m Diff_brainMask.nrrd







Multi-compartment along fibers analysis

We have introduced in [5] a new two parts pipeline for patient-specific, along fibers diffusion properties analysis. It seeks differences along major fiber tracts of diffusion properties between a patient MCM image and a set of controls MCM images, all registered on a common template reference for comparison. The pipeline operates in two parts:


	an offline part, done once and for all patients, that constructs from a set of controls DWIs and T1 images an MCM atlas with major fiber tracts enriched with MCM derived information


	an online part that starts from a T1 and DWI image of a patient, preprocesses them, registers them on the atlas and compares MCM enriched fibers of the patient to the ones of the controls





Fiber atlas construction

This part of the pipeline requires that you install the TractSeg python package. For more information, please refer here [https://github.com/MIC-DKFZ/TractSeg]. Once this installation is done, you will have to organize your controls data so that the actual scripts are able to use it. The data structure is the following

Main_folder
+-- T1_Data
|  +-- PrefixT1_1.nii.gz
|  +-- PrefixT1_2.nii.gz
|  +-- PrefixT1_3.nii.gz
|  .
|  .
|  .
+-- Diffusion_Data
|  +-- Diffusion_Data_1.nii.gz
|  +-- Diffusion_Data_1.bval
|  +-- Diffusion_Data_1.bvec
|  +-- Diffusion_Data_1_reversed_b0.nii.gz
|  +-- Dicom_1/ (optional)
|  +-- Diffusion_Data_2.nii.gz
|  +-- Diffusion_Data_2.bval
|  +-- Diffusion_Data_2.bvec
|  +-- Diffusion_Data_2_reversed_b0.nii.gz
|  +-- Dicom_2/ (optional)
|  .
|  .
|  .





This structure is an example with everything in. In practice, you do not need Dicom folders of the DWI data, but if you have them and have a Siemens scanner, the gradient vectors will be extracted from them to suit Anima needs. The reversed B0 has to have this specific suffis, but is also not required. It will just work better if you have them, otherwise, the T1 image will be used for distortion recovery. Once the data is structured, you can go on and run the first script (the preparation script). while being in the main folder, simply type:

~/Anima-Scripts-Public/diffusion/mcm_fiber_atlas_comparison/animaSubjectsMCMFiberPreparation.py -n 50 -i Diffusion_Data/Diffusion_Data -d Diffusion_Data/Dicom -t T1_Data/PrefixT1





The -n option controls the number of subjects. As mentioned above, the -d option may be removed if you are confident with your gradient vectors. This script will do the following:


	preprocess each DWI using diffusion pre-processing script


	estimate MCM from smooth DWIs


	run tractseg (registration to MNI, run tractseg, get begin and end regions, merge them and put them back on patient)


	put all data in structure for atlas creation and post-processing




This script will give the following folders as output:


	Tensors: tensors for atlas creation


	Preprocessed_DWI: DWI brain masks and corrected DWI using the preprocessing scripts


	Tracts_Masks: masks for tractography from tractseg


	MCM: MCM estimations from DWI




With this preprocessed data, we can now move on to the second offline step: create a template from the control subjects. For that, create a sub-folder Atlas in your main folder and create links to the four created folders in it:

cd Main_folder
mkdir Atlas
cd Atlas
ln -s ../Tensors Tensors
ln -s ../MCM MCM
ln -s ../Tracts_Masks Tracts_Masks
ln -s ../Preprocessed_DWI DWI





Run then a DTI atlas creation using the atlasing scripts of Anima in the Atlas folder with 10 iterations of atlas creation. This will build a DTI atlas from the data and output a residualDir folder to put back inside the Atlas folder as well as a averageDTI10.nrrd file. The last step of fiber atlas construction is to perform tractography on the atlas and enrich the fibers with information from the MCM models. This is done with the animaAtlasTractsExtraction.py script while still being in the :

~/Anima-Scripts-Public/diffusion/mcm_fiber_atlas_comparison/animaAtlasTractsExtraction.py -i Tensors/DTI -a averageDTI10.nrrd -n 22 -m MCM/MCM_avg --mask-images-prefix DWI/DWI_BrainMask -t Tracts_Masks





This script will provide several outputs including Atlas_Tracts (raw atlas tracts on the atlas) and Augmented_Atlas_Tracts (atlas tracts with information from eachcontrol subject extracted from MCM).



Patient to atlas comparison

We are now ready to perform the analysis of patients using the fiber atlas constructed in the previous section. No real organization is required here, however as we may be processing several patients in a row, it is always good to get organized. Let us assume the data is organized in a patients_folder somewhere. This folder contains a DWI folder organized similarly to before and a T1 folder for anatomical data. The patient to atlas comparison may be run as follows:

~/Anima-Scripts-Public/diffusion/mcm_fiber_atlas_comparison/animaPatientToAtlasEvaluation.py -n 50 -i DWI/Diffusion_Data_1.nii.gz -d DWI/Dicom_1 -t T1/T13D_1.nii.gz -a <Controls_Main_Folder>/Atlas/averageDTI10.nrrd -r <Controls_Main_Folder>/Atlas/Atlas_Tracts --tracts-folder <Controls_Main_Folder>/Atlas/Augmented_Atlas_Tracts





Again, the -d option is not mandatory. This will perform the following tasks using the atlas in the <Controls_Main_Folder> path:


	pre-process the patient image as in subjects preparation


	register DTI patient image on atlas DTI image, apply transformation to MCM image


	for each tract, augment raw atlas tracts with data from patient


	for each tract, compute pairwise tests along tracts between patient and controls


	Finally, compute disease burden scores for each tract




The results of all these operations will be available in two folders: Patients_Disease_Scores for the disease scores in csv format, Patients_Augmented_Tracts for the along tracts abnormalities (*_FDR.fds).




References


	Renaud Hédouin, Olivier Commowick, Elise Bannier, Benoit Scherrer, Maxime Taquet, Simon Warfield, Christian Barillot. Block-Matching Distortion Correction of Echo-Planar Images With Opposite Phase Encoding Directions. IEEE Transactions on Medical Imaging, in press available online, 2017.


	Nicolas Wiest-Daesslé, Sylvain Prima, Pierrick Coupé, Sean Patrick Morrissey, Christian Barillot. Rician noise removal by non-Local Means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. 11th International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 5242 (Pt 2), pp.171-179, 2008.


	Aymeric Stamm, Olivier Commowick, Simon K. Warfield, Simone Vantini. Comprehensive Maximum Likelihood Estimation of Diffusion Compartment Models Towards Reliable Mapping of Brain Microstructure. 19th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), 2016.


	Aymeric Stamm, Olivier Commowick, Patrick Pérez, Christian Barillot. Fast Identification of Optimal Fascicle Configurations from Standard Clinical Diffusion MRI Using Akaike Information Criterion. IEEE International Symposium on Biomedical Imaging, 2014.


	O. Commowick, R. Hédouin, C. Laurent, J.-C. Ferré. Patient specific tracts-based analysis of diffusion compartment models: application to multiple sclerosis patients with acute optic neuritis. ISMRM 2021.








          

      

      

    

  

    
      
          
            
  
Multiple sclerosis scripts

This section describes Anima scripts for helping multiple sclerosis (MS) lesions segmentation.


MSSEG 2016 prerpocessing script

This script (animaMSExamPreparationMSSEG2016.py) combines several processing steps to preprocess a single time point containing T1, T2/PD, FLAIR and Gd T1 images using the same script that was used in the MSSEG 2016 challenge [1]. It relies on a precomputed brain mask that may be obtained from volBrain [https://www.volbrain.upv.es] (as for the challenge) or the brain extraction scripts of Anima. The script performs denoising, bias correctino, brain masking and registration to the FLAIR image as explained in [1].



MSSEG-2 longitudinal preprocessing script

This second script comes from the second challenge [https://portal.fli-iam.irisa.fr/msseg-2/] on new MS lesions segmentation that took place at MICCAI 2021. It is named animaMSLongitudinalPreprocessing.py and takes as an input an organized folder with FLAIR images at two time points (already rigidly registered) and, if available, of some ground truths. It then performs basic preprocessing using Anima tools, on the two images. This script was provided to the challengers at the MSSEG-2 challenge to help them participate. The following steps are performed:


	brain mask extraction on the two images and fusion


	brain masking of the images


	N4 bias correction


	if a template FLAIR image is given, Nyul normalization of the images to the template
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Relaxometry scripts

This section describes Anima scripts for relaxometry processing.


T2 relaxometry script

This script combines several processing steps to compute from a 4D T2 relaxomaetry sequence (plus possible additional images) T2 maps or multi-T2 maps following [1]. This script performs the following preprocessing:


	brain masking either from the provided T1-weighted high resolution image provided using the -m option or by default the first volume of the input 4D image


	computation of the mono T2 maps with B1 correction using animaT2EPGRelaxometryEstimation [2]


	computation of multi-T2 weight maps (modeled as three Gaussians as in [1]) as well as the myelin water fraction using animaGMMT2RelaxometryEstimation [1]




Some of these steps may be discarded using the --no-\* options available in the script help. If provided, the EPG algorithms may use an external T1 image provided by the user with the -t option. Results of this script are specified using the -o and -g options.
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Segmentation scripts

This section describes Anima scripts for segmentation. For now, we have atlas-based intracranial extraction and multi-atlas segmentation.


Atlas-based intracranial mask extraction

This requires an additional atlas image for which the intracranial mask is known. These data are provided in the Anima scripts data.

The script simply takes as an input the image or images to be brain-extracted and performs a series of registrations to bring the atlas on the image. Finally the brain mask is applied to the image. For each brain-extracted image, two images are produced: image_brainMask.nrrd and image_masked.nrrd. The first one is the binary mask of the brain, and the second one the image with only the brain kept. T1 images are the ones that should work best as the atlas proposed is in the T1 modality but since the registration algorithm uses an adapted similarity measure, other MRI modalities should be fine as well as long as their field of view is similar to the one of the atlas.

Example:

~/Anima-Scripts-Public/brain_extraction/animaAtlasBasedBrainExtraction.py -i T1Image.nrrd







Multi-atlas segmentation

As for the atlasing scripts, this script requires to be run on a cluster with an OAR [http://oar.imag.fr] scheduler. It provides a basic multi-atlas segmentation, i.e. does the following:


	registers a set of images with known segmentations (atlases) onto an image to be delineated


	applies transformations to known segmentations


	fuses the transformed segmentations using majority voting (animaMajorityLabelVoting in segmentation tools)




Several options are available:


	-i: anatomical image to be delineated


	-a: list of atlas anatomical images i.e. a text file with a file name on each line


	-s: list of corresponding atlas segmentations i.e. a text file with a segmentation name on each line


	-o: output label image for the input anatomical image


	-c: optional number of cores for each job on the cluster




Example:

~/Anima-Scripts-Public/multi_atlas_segmentation/animaMultiAtlasSegmentation.py -i T13D.nrrd -a listAtlasImages.txt -s listAtlasSegmentations.txt -o T13D_segmented.nrrd









          

      

      

    

  

    
      
          
            
  
License

Anima public library for medical image processing
Copyright (C) 2015 - 2020, Inria

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.


Contact

This software is distributed under the AGPL v3 or later license. If you wish
to use the code under another license, contact us at anima-licensing@inria.fr
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